Biosilicate®–gelatine bone scaffolds by the foam replica technique: development and characterization
نویسندگان
چکیده
The development of bioactive glass-ceramic materials has been a topic of great interest aiming at enhancing the mechanical strength of traditional bioactive scaffolds. In the present study, we test and demonstrate the use of Biosilicate® glass-ceramic powder to fabricate bone scaffolds by the foam replica method. Scaffolds possessing the main requirements for use in bone tissue engineering (95% porosity, 200-500 μm pore size) were successfully produced. Gelatine coating was investigated as a simple approach to increase the mechanical competence of the scaffolds. The gelatine coating did not affect the interconnectivity of the pores and did not significantly affect the bioactivity of the Biosilicate® scaffold. The gelatine coating significantly improved the compressive strength (i.e. 0.80 ± 0.05 MPa of coated versus 0.06 ± 0.01 MPa of uncoated scaffolds) of the Biosilicate® scaffold. The combination of Biosilicate® glass-ceramic and gelatine is attractive for producing novel scaffolds for bone tissue engineering.
منابع مشابه
Synthesis and Characterization of Highly Porous TiO2 Scaffolds for Bone Defects
The purpose of this study was to fabricate and investigate the highly porous structure using titanium dioxide, which is a candidate for bone defect repairing. For this purpose, TiO2 scaffolds were synthesized using titanium butoxide, Pluronic F127 surfactant, and polyurethane foam blocks. Therefore, a colloid includes titanium butoxide and F127 and the polyurethane foams were immersed in it. Th...
متن کاملFoam-like scaffolds for bone tissue engineering based on a novel couple of silicate-phosphate specular glasses: synthesis and properties.
Glass-ceramic scaffolds mimicking the structure of cancellous bone were produced via sponge replication technique by using a polyurethane foam as template and glass powder below 30 lm as inorganic phase. Specifically, a SiO₂-based glass of complex composition and its corresponding P₂O₅-based "specular" glass were used as materials for scaffolding. The polymeric sponge was thermally removed and ...
متن کاملSynthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application
A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...
متن کاملPreparation and characterization of PCL polymeric scaffolds coated with chitosan/ bioactive glass/gelatin nanoparticles using the tips methodology for bone tissue engineering
Objective(s): The present study aimed to prepare polycaprolactone (PCL) scaffolds with high porosity and pore interconnectivity, in order to copy the microstructure of natural bones using the thermally induced phase separation (TIPS) technique. Materials and Methods: The scaffolds were coated with chitosan (CH), bioactive glass (BG), and gelatin nanoparticles (GEL NPs) and assessed using ...
متن کاملDevelopment of Clay Foam Ceramic as a Support for Fungi Immobilization to Biodiesel Production (RESEARCH NOTE)
Biodiesel is an attractive alternative fuel because of its nontoxicity and biodegradability properties. Biodiesel is produced through transesterification of vegetable oils’ triglyceride. It is obtained from vegetable oils or fats either by chemical or enzyme-catalyzed transesterification with methanol or ethanol. By using whole-cell biocatalyst immobilized within biomass support particles (BSPs...
متن کامل